Carbon Neutral Solution for Marine

Carbon Capture, Utilization and Storage & Fuel Supply System & Hydrogen Generation System

ENG

Panasia: We are heading to the future with eco-friendly solutions

PANASIA is a green energy solution provider that leads the way in building a future in which humans and nature coexist.

At PANASIA, we are continuously working to take risks and develop technologies powered by nature based on the standards of nature across various areas, from the air solutions to the water solutions, and to our energy solutions.

We offer high-quality ICT-based products by adopting our unique "SMART PANASIA" system, which encompasses all processes from product planning to design, production, and to services, and allows our technologies to learn and evolve on their own.

With its core technologies and years of experience, PANASIA has become a global leader that uses its technology to respond to demands in various environmental areas.

WATER SOLUTIONS

AIR SOLUTIONS

ENERGY SOLUTIONS

Ballast Water Treatment System (UV type)

Top-

De-SOx System (Scrubber)

同	
649	

Hydrogen Generation System

Measurement Control System

De-NOx System (SCR)

Carbon Capture and storage System (CCS/OCCS)

WTS for Exhaust Gas System (Chemical / Membrane)

Engine Exhaust Recycling System (iCER)

Fuel Supply System (LNG/Ammonia/Methanol)

CARBON-NEUTRAL SOLUTION CATEGORY FOR SHIP

Hydrogen Generation System & Carbon Capture and Storage System

REGULATION

Strengthened IMO strategy on GHG reductions

Total: Well-to-wake GHG emissions; Intensity: CO, emitted per transport work; Fuel: Uptake of zero or near-zero GHG technologies, fuels and/or energy sources

CII Carbon Intensity Indicator

Carbon Intensity Indicator (CII)

- The Carbon Intensity Rating scheme is applicable to existing ships operating internationally above 5,000 GT.
- The Carbon Intensity Indicator (CII) is a measure of how efficiently a ship operates based on vessel traffic data.
- \cdot Each ship will be given an annual rating ranging from A to E, based on the annual CII rating achieved by the ship against the annual CII requirement.

GHG Reduction Technologies

Category	Technology	Details	GHG Reduction(%)
		Ship design optimization	10~15
	Resistance efficiency	Resistance reduction technology	2~7
Ship energy effeciency		Structure lightening	0~10
improvement		High efficiency propulsion development	0~20
	Propulsion efficiency	ESD Development	0~7
		Electric propulsion, eco-friendly engine development	0~100
	Alternative fuel(1) low carbon fuel	LNG, LPG, CNG	20~30
		Hydrogen	0~100
	Alternative fuel(2) zero carbon fuel	Methanol	20~100
		Ammonia	20~100
Clean, alternative		Bio	20~100
and energy		Electricity(Battery)	0~100
		Fuelcell(Hydrogen)	0~100
	Alternative fuel(3) non fossil fuel	Wind power	1~32
		Solar power	
		Nuclear power	
	Navigation optimization	Voyage and speed optimization	0~60
	Fleet optimization	Cargo volume optimization	0~30
Operating efficiency	Operating optimization	Vessel-port interface, AMP	0~5
	Onboard CCS	Post combustion	0~60
	Ship operating system	Internal energy efficiency improvement, waste heat reclaimer	2~7

The new FuelEU Maritime regulation (Fit For 55 by the European Union)

The FuelEU Maritime initiative is a new regulation proposal due to come into effect in 2025. The initiative will require all vessels of 5,000 GT and above to start reducing the GHG intensity of the energy they use onboard.

It makes use of a lifecycle analysis when evaluating the GHG intensity of fuels, taking into consideration all emissions 'from well to wake', or from when the fuel is produced to when it is burned.

Emission Factors status by organizations

Fuel consumption	×	Emission Factors (T-W or W-W)	=	Carbon emission
Cate	egory		Tank to Wake	Well to Wake
Other sector (IPCC Na	Other sector (IPCC National GHG Inventory)		•	
Aviation	EU (E	EU-ETS)	•	
Aviation	CO	RSIA*		•
	EU (Fuel E	U Maritime)		•
Shipping	EU (E	EU-ETS)	•	
		NO	•	Under discussion

Fuel's GHG Intensity

(Source: Prepared by ClassNK based on the emissions factors listed in the FuelEU Maritime Regulations, etc.)

* CORSIA : Carbon Offsetting and Reduction Scheme for International Aviation

Onboard Carbon Capture And Storage System

Pan-OCCS™

Onboard Carbon Capture and Storage System is a system that captures carbon dioxide generated during the combustion of fossil fuel, in order to reduce the amount of CO₂ released into the air.

TECHNOLOGY

CCS Key Components

Schematic Diagram of Carbon Capture Process

• Pre-treatment of flue gas

Flue gas is cooled in the quenching tower. When the particles and sulfur oxide are removed, the gas is pressurized by the intake fan and transferred to the absorber tower.

3 Regeneration

A solvent that has absorbed CO₂ is transferred to the stripper tower. The high-temperature vapor in the reboiler causes CO_2 to be removed from the solvent. In the cooling tower, it breaks down into water and CO₂. Then, the water is recovered and sent to the stripper while CO₂ is transferred to the liquefaction process.

2 CO₂ absorption

Once cooled, the gas comes into contact with the chemical solvent in the absorber, and CO₂ is selectively absorbed. To ensure efficient delivery of the substance and keep the tower size to a minimum, high-performance packing and an appropriate layout of the internal components are required.

4 Liquefaction & storage

Adding pressure and cooling for liquefaction purposes to meet the needs of storage containers and buyers.

CCS Test Barge Facility

KR

The Korean Register of shipping (KR) has awarded Approval In Principle (AIP) to PANASIA for the 'Onboard Carbon Capture and Storage System(OCCS)', and eco-friendly technology which captures CO₂ Emitted in the exhaust gases generated from the internal Combustion engines of ships

Intake Gas Property

General Specification

국 선 급

KR

Item	Description	Item	Description
Mass Gas Flowrate	323 kg/hr	Capturing Level	90%
Flue Gas Flowrate (at 40°C)	250 Nm3/hr	Pressure Drop	Under 500mmAq
Fuel Type	HSFO (3.5%)	Captured CO ₂	0.6 Ton/day

Composition of Exh. Gas

Ingredient	Composition (Vol%)	Flowrate (L/h)	Flowrate (L/h@40°C)	Mol	Weight (kg)	Mass Fraction
N ₂	75.6	189000	216692	8437.5	236.42	73.2%
0 ₂	12.6	31500	36115	1406.3	45.00	13.9%
Ar	0.8	2000	2293	89.3	3.57	1.1%
H ₂ O	5.5	13750	15765	613.8	11.06	3.4%
CO ₂	5.5	13750	15765	613.8	27.02	8.4%
Summary	100	250000	286630	11161	323	100.0%

Feature

Multiple absorber tower applications by the ship height

• Simple operation and maintenance \cdot Easy Installation on a vessel

Various solvent verification

• Flexible response to shipowner's requirements with various solvent

11

Full automation (HMI)

• Simple operation with HMI and the MSCS integration \cdot Easy maintenance with its system mode *MSCS: Marine Satellite Control System

Feasibility Study

* In the case of a rating result of E in any year or a rating of D for 3 consecutive years, it is necessary to fill out a corrective action plan in the SEEMP III and obtain the confirmation by the Administration or an RO.

- Components Concept

CII analysis	Specification -	- Finish

Calculating CII based on the vessel information. provide CCS installation plan including CII scenario and reduction capacity for the vessel considering its target lifetime.

CIIR	2023	2024	2025	2026	2027	2028	2029	2030
2.56	2.43	2.38	2.33	2.28	2.21	2.14	2.07	2.00

duction	CO₂.t/y	Reduction	CIIA	CII _R	CII(AER) Scenario(~2030)							
Rate	CO ₂ .t/y	(CO ₂ .t/hr)		Cing	2023	2024	2025	2026	2027	2028	2029	2030
Base	28,325	0.00	2.86		D	E	E	E	E	E	E	Е
5%	27,133	0.21	2.74		D	D	D	Е	E	Е	E	Е
10%	25,941	0.41	2.62		D	D	D	D	E	E	E	Е
15%	24,750	0.62	2.50	2 5 6 2	С	С	D	D	D	D	E	E
20%	23,558	0.83	2.38	2.563	С	С	С	С	D	D	D	E
25%	22,366	1.04	2.26		В	С	С	С	С	С	D	D
30%	21,175	1.24	2.14		В	В	В	В	С	С	С	D
35%	19,983	1.45	2.02		А	А	В	В	В	С	С	С

Fuel Supply System

The fuel gas supply system of PANASIA is a device that vaporizes alternative energy such as LNG, ammonia, and methanol and supplies it to the ship engine.

- · LNG Fuel Supply System
- · Ammonia Fuel Supply System

LNG Fuel Supply System

The LNG Fuel Supply System refers to the facility on vessel using LNG (Liquefied Natural Gas) as a ship fuel. Depending on the engine model, it is divided into HP (high pressure) & LP (low pressure) Type.

1. HP/LP Type

- Design Data
- HP Pump Dis. Press. 300 bar reciprocating pump X 2 sets
- LNG Feed Pump Dis. Press 12 bar submersible centrifugal type pump X 2 sets
- LP Vaporizer Temp: $-163^{\circ}C \rightarrow 45^{\circ}C$ (Cold side)
- HP Vaporizer Temp: -163°C → 45°C (Cold side)
- Glycol Skid Glycol Water (Water 50 : Glycol 50) Glycol Water Pump : Vertical Inline Centrifugal type X 2 sets Heat Exchanger : Shell&Tube or Equivalent Glycol Water Tank : abt. 0.5 m³
- LNG Storage Tank IMO Type-C Single Shell Tank IMO Type-C Double Shell Tank IMO Type-C Lattice Tank Material 9% Nickel Steel or Equivalent

2. LP Type

- Design Data
- LNG Feed Pump Dis. Press 18 bar submersible centrifugal type pump X 2 sets
- LP Vaporizer Temp: $-163^{\circ}C \rightarrow 45^{\circ}C$ (Cold side)
- **Glycol Skid** Glycol Water (Water 50 : Glycol 50) Glycol Water Pump : Vertical Inline Centrifugal type X 2 sets Heat Exchanger : Shell&Tube or Equivalent Glycol Water Tank : abt. 0.5 m³
- LNG Storage Tank IMO Type-C Single Shell Tank IMO Type-C Double Shell Tank IMO Type-C Lattice Tank Material 9% Nickel Steel or Equivalent
- LP BOG Comp. Injected Screw Type (16 bar) X 1 set

Methanol Fuel Supply System

The Methanol Fuel Supply System uses liquid methanol as a fuel for ships and requires advanced technology.

Reference

G/E+G.W LINE SKID

M/E LINE SKID

ONE SKID

Items	Value
Pressure to engine	13 ± 0.5 bar.g
Temperature to engine	25 ~ 50 °C
Inert Gas Used	Nitrogen
Heating Media	Glycol Water (25wt.%)
Cooling/Heating Water	L.T.C.F.W(36°C)
ATEX Classification	Zone 1

Propulsion Engine Fuel Supply Application

Methanol Supply Pump Dis. Press. 6 bar.g / Sealless VFD Control Methanol Fuel Pump Dis. Press. 13 bar.g (Diff. Head 71 m) / Sealless VFD Control Temp: -18 deg.C -> 25 deg.C / Glycol water 25~40%wt. Shell & Plate or Equivalent Duplex / 10 micron 100 micron Austenite Stainless Steel (A213-TP316) Fuel Pipe Material

Generator Engine Fuel Supply Application

Fuel Heater

Fuel Filter

Fuel Strainer

Methanol Supply Pump Fuel Heater	Dis. Press. 8 bar.g / Sealless VFD Control Temp : -18 deg.C -> 25 deg.C / Glycol water 25~40%wt. Shell & Plate or Equivalent
Fuel Filter	Duplex / 10 micron
Fuel Strainer	Y Strainer / 100 micron
Fuel Pipe Material	Austenite Stainless Steel (A213-TP316)
Main Frame Material	SS400 or eq.

Common Utility System for MeOH LFSS

Vertical Inline Centifugal x 2 set
Medium : Glycol water 25~40%wt. / LT water (36 deg.C)
Glycol water tank : abt. 0.5 m3
N ₂ Supply train with valve (Automatic Purge system as an option)
Penumatic acting drain pump: 60LPM
Drainage level control buffer
Leak Detection Sensor (LEL 25% H/C)
Control Panel & HMI

Ammonia Fuel Supply System

The Ammonia Fuel Supply System uses ammonia with a flash point of approximately 130 degrees, as a ship fuel, and it has commons of LNG, LPG, and methanol supply system in aspect of supplying liquefied forms of fuels into the engine.

Design Data

- LP Pump Dis. Press. 18 bar Multi-stage centr. Pump X 1 set
- HP Pump Dis. Press. 88 bar Metering Pump X 1 set
- BOG Compressor Dis. Press. 18 bar Oil Injection Screw Water Cooled X 1 set
- Vaporizer Temp: -24°C → -18.7°C
- Water seal Temp: -24°C → 60°C
- NH₃ Supply Skid IMO Type-C Single Shell Tank. (abt. 5m³) Material 9% Nickel Steel or Equivalent LP, HP Pump
- Heat Exchanger Shell&Tube or Equivalent
- NH₃ Liquefaction Skid BOG Compressor & Seperator
- NH₃ Dilution Skid, NH₃ Catch Skid IMO Type-C Single Shell Tank. (abt. 5m3)
- Heat Exchanger Shell&Tube or Equivalent
- Aqueous NH₃ Pump Dis. Press 7 bar Diaphragm pump X 1 set
- Reference

NH₃ Supply Skid

NH₃ Liquefaction Skid

NH₃ Dilution Skid

NH₃ Catch Skid

Hydrogen Generation System

PANASIA's hydrogen generation system "PanaGen™" is a renewable energy solution designed to generate hydrogen and achieve carbon neutrality in the hydrogen energy industry. The hydrogen generation system that employs natural gas reforming combines the reforming system and fuel cells.

The hydrogen generation system for use in buildings to generate power and the small&mid sized hydrogen generation system that can store and utilize the hydrogen generated on site can be used on ships that use hydrogen as a propulsion fuel.

– Features

16 Carbon Neutral Solution for Ship

TECHNOLOGY

Ammonia Cracking Hydrogen Generation System

- System Flow (PSA include)

- System Flow (PSA exclude)

Specifications

Feed Gas	Pressure	Product(H ₂)			
reeu das	i icssuic	Capacity	H ₂ Purity	Pressure	
Ammonia	~15 bar.g	Customized	Above 99.97-8% (NH ₃ <0.1 ppm)	10 bar.g	

Installation Comparison

Development

[Busan Ammonia Eco-Energy Business] 50 Nm³/h NH₃ Cracking System Manufacturing / Task

Туре	50 Nm³/h NH ₃ Cracking System
Cracker with TSA/PSA	High Pressure
H ₂ Capacity	50 Nm ³ /h
H ₂ Purity	Low : above 99.97-8%
Residual NH ₃ concentration	Below 0.1 ppm

Natural Gas-Reforming Hydrogen Generation System

Steam Methan Reforming

Specifications

Feed Gas	Pressure	Product(H ₂)			
		Capacity	H ₂ Purity	Pressure	
Meth	nane (Biogas and etc)	9.5 bar.g	Customized	99.999%	6 bar.g

Line-Up

Line up		PanaGen [™] -30	PanaGen [™] -100	PanaGen [™] -250	PanaGen [™] -500	PanaGen [™] -2300
Output(product)						
Product(H ₂) Flow	Nm3/hr	~30	~100	~250	~500	~2300
	kg/day	~60	~200	~500	~1000	~4600
Purity	%vol	99.999				
Pressure	bar.g	~6.5	~6.5	~6.5	~6.5	~20
General Specifications						
Feed NG flow	Nm3/hr	~12	~40	~	~	~
Feed NG Pressure	bar.g	8.9 ~ 9.5				
DI Water	L/hr	~33	~100	~250	~490	~2200
Water Quality (Feed/DI)	uS/cm	Feed Water : <650, Deionized Water : <1				
Comp. Air Quality		ISO 8573-1 Class 3/3/4				
Operating Amb. Temp.	°C	-20 ~ 40				
Electricals						
Power Source		380VAC 3phase 60Hz				
Electricity	kWh	~14	~30	~60	~150	~300

At PANASIA,

we offer unique services aimed at increasing customer convenience.

This customized ICT-based service, which is available 24/7, collects product data in real time and checks the system status remotely to provide customers with prompt and accurate solutions anytime, anywhere. It also provides early diagnosis of problems using accumulated data to assist customers in system control to help their systems run at their optimal performance.

 $\overline{M}_{\mathcal{B}}$ Safety control Safety controls for issues including hydrogen

- leakage
- Real-time checking and issuing alert notifications • Advance prediction and prevention of problems

• Real-time monitoring of output, amount of generated power, efficiency, etc. • Fault diagnosis and analysis

20 Carbon Neutral Solution for Ship

PANASIA's integrated control system is a customized ICT-based service available 24/7, which collects product data in real time and checks the status of system remotely to provide customers with prompt and accurate solutions anytime, anywhere.

Efficient management

- Supporting online remote updates
- Big data-based maintenance and control
- Replacement notifications for spare parts
- Keeping operational losses to a minimum

MRO Service E-Learning Program

At PANASIA, we offer product training programs you can access anytime, anywhere. PANASIA's training program service called the "E-Learning Program" is available both online and on-site, allowing you access training anytime, anywhere. You can also watch videos and try running products on site using a tablet PC or a laptop. Our E-Learning Program contains product descriptions, operating instructions, crisis response, and other details so you can operate products professionally.

Learning Program Contents

Chapter	Contents
1	Understanding system of product
2	Standard operating procedures
3	Compliance issues
4	Installation requirement
5	Maintenance requirement
6	Troubleshooting for the system/unit
7	Troubleshooting for the component/device

CBT (Computer Based Training Program)

IBT (Internet Based Training Program)

Claim Handling System

Maintenance work process

After the conclusion of maintenance, the service report is automatically delivered to the customer so that the customer can verify the processing details in real time. We also use the report for product improvement through internal feedback to prevent the recurrence of service issues.

Email list -	Email list \rightarrow claim input/registration (all Project Claims rece	
Acknowled	lge	
Con	firmation of claim mail reception (RPA)	
Claim repo	ort/submission	
Clai	m details Report (RPA)	
Outstandir	ng claims	
•	 Dashboard (by technician/project, open claim list) To supply(Material request), To attend(S/E arrangement 	
Material re	quest form	
-	e-Panasia(Draft), Groupware(Approval)	
Feed-Back	Report	
-	Groupware Draft/Approval/E-mail	
Request fo	r service schedule	
Req	uest possible schedule of after sales service along with pending clair	
Request fo	r Repair/Supply&Reminder	
Ser	vice action request form before engineer's visit (RPA)	
Service pla	n&Service results	

Delivery of service plan & results (Service reports) (RPA)

All service and maintenance are performed digitally to minimize human error. After the product has been delivered, the customer receives an ID and password for the Claim Handling System in our maintenance system providing them with access. In the event of a problem with the product, if the customer registers the problem in the CHS, a technician will be assigned, and the technician will resolve the problem through the management and continuous monitoring of the claim. We also deliver quality services to our customers with faster, more convenient operations and management through the introduction of an RPA system.

HEAD OFFICE&FACTORY	55, Mieumsandan3-ro, Gangseo-gu, Busan, 46744, Korea TEL: +82-51-831-1010 FAX: +82-51-831-1399 www.worldpanasia.com E-mail: panasia@worldpanasia.com	
MARKETING	TEL: +82-70-4860-7912 E-mail: marketing@worldpanasia.com	
EUROPE B.V.	TEL: +31-10-79-53-005 E-mail: europe@worldpanasia.com	
JAPAN CORPORATION	TEL: +81-6-4795-8748 E-mail: japan@worldpanasia.com	
CHINA CORPORATION	TEL: +86-21-6235-1601~3 E-mail: china@worldpanasia.com	

To reflect PANASIA's corporate philosophy of seeking eco-friendly and sustainable value, **SOY INK**, this booklet was printed with naturally biodegradable soy ink that makes paper recycling easier.

2024/01/22 ver.